Correlating the rheological properties of Pickering emulsions with the enhanced oil recovery efficiency in porous media

A. Strekla ^{1,2}, Ch. Ntente ^{1,3}, M. Theodoropoulou ¹ and Ch. Tsakiroglou ^{1,*} ¹ Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece

² University of Patras, Department of Physics, ³ University of Patras, Department of Chemistry ctsakir@iceht.forth.gr

Globally the overall oil recovery efficiency for primary and secondary recovery range from 35% to 45% and tertiary recovery methods that can increase the enhanced oil recovery (EOR) efficiency by 10-30% could contribute to energy supply. The tertiary (EOR) methods are commonly based on the injection of materials to displace the trapped oil. During EOR processes, the physicochemical properties of the rock alter to favor the mobilization of trapped oil ganglia. This might occur with: (i) the reduction of the interfacial tension thus decreasing the capillary forces; (ii) the increase of water viscosity, thus increasing the mobility ratio; (iii) the alteration of the wettability, thus facilitating the detachment of oil from the rock surfaces. Conventional EOR methods include chemical flooding (CEOR), gas injection, thermal recovery, microbial enhanced oil recovery (MEOR), low-salinity waterflooding, and foam-EOR. CEOR includes different methods of injecting polymers, surfactants, salts and alkalis into the reservoirs. Studies have shown that polymer flooding might increase oil recovery by 5-30% of original oil in place (OOIP). Especially, Pickering emulsions have been suggested as substitutes or improvers for traditional polymer surfactants systems, appear superior performance with regard to chemical stability, suitable rheological properties, low-cost, and environmental safety. The use of Pickering emulsions in EOR processes comprise an emerging and well-promising approach.	opment of "smart fluids" by grafting adequately synthesized ers to the surface of nanoparticles, and use them as agents for the sis of Pickering emulsions. ation of the stability / longevity of nano-colloids, and rheological or of Pickering emulsions with their composition (salinity, ionic th, divalent ion concentration, oil to water volume ratio). ation of the interfacial and rheological properties of "smart fluids" their capacity to mobilize oil ganglia from porous media models, sanpacks, core plugs). on of the most efficient "smart fluids" for EOR processes.

Methodology

Synthesis and stabilization of nano-colloids

Polyphenol-coated iron oxide nanoparticles (IONP)

Properties of Iron Oxide Nanoparticles (IONP)

PPHs : **pH=6.36** , ζ-potential= -37.7mV

 μ_{disp}

Displacing <u>suspension</u> in Secondary

	IONPs: pH=6.05, ζ-potential =-22.9mV					Imbibition			
Nanoparticles suspension	Surface tension (mN/m)	Interfacial tension (mN/m)	Contact angle air / suspension θ(°)	Contact angle synthetic oil / suspension θ(°)	Average diameter of nanoparticles (nm)	Primary Drainage [*] S _o	Primary Imbibition S _o	Secondary Imbibition S _o	EOR efficiency (%)
IONPs 1.0g/L	52.89±0.29	53.54	21.7 ± 0.02	9.6± 8.7	141.8±5.8	0.85	0.52	0.50	3.8
IONPs 0.75g/l	54.47±0.41	55.31	25.7 ± 0.20	20.7 ± 5.1	164.2±2.2	0.84	0.511	0.518	-1.4
IONPs 0.5g/L	56.48±0.27	58.12	33.4±2.4	24.9±3.1	105.7±8.2	0.81	0.45	0.45	0.0
IONPs 0.25g/l	2 59.78±0.17	58.35	25.4±1.20	19.1±0.6	105.7±16.2	0.81	0.53	0.52	1.9
PPHs 3.0g/L	45.29 ± 0.13	49.05	-	-	68.06±8.3	0.82	0.542	0.541	0.2

Pickering Emulsions Synthesis and Properties

The rheology of Pi	ckering e	emulsions follo	WS	the
power law model:	$\mu = \mu_{inf}$			
$\langle \mu \rangle = \mu_{inc} + \left(\frac{\mu_1 - \mu_{inf}}{\mu_1 - \mu_{inf}}\right)$	ν $n-1$	$u_0 < \mu >$		κ= <μ>

$$\left[\langle \mu \rangle = \mu_{inf} + \left(\frac{1}{n} \right) \gamma_w^{n-1} \right] \qquad \left[Ca = \frac{a_0 < \mu >}{\gamma_{ow}} \right] \qquad [\kappa]$$

 $\gamma_w = \left(\frac{3n}{4r_H}\right) \left(\frac{3n+1}{4n}\right) \rightarrow u_p = \frac{u_0}{\varphi_V} \rightarrow \varphi_V = \frac{n(w_p)(D_p)}{4L_p^2}$

 γ_w is the shear rate at pore-wall, φ_V is the porosity of the planar porous medium at the vertical direction, r_H is the equivalent hydraulic pore radius ($r_H=45 \mu m$) [3], Ca capillary number, κ viscosity ratio , $\mu_{disp} = 0.026$ Pa s

Emulsion	$\begin{array}{c} \mu_1 \\ (\text{Pa s}) \end{array}$	μ _{inf} (Pa s)	n	<µ> (Pa s)	Ca (10 ⁻⁵)	К
$C_{\rm Fe} = 1.0 \ g/L$	2.468	0.001	0.196	0.423	11.9	1.63
$C_{\rm Fe} = 0.75 \ g/L$	1.053	0.003	0.217	0.189	5.98	0.72
$C_{\rm Fe} = 0.5 \ g/L$	0.213	0.006	0.252	0.045	1.37	0.17
$C_{\rm Fe} = 0.25 \ g/L$	0.564	0.002	0.287	0.115	3.45	0.44

Assessing the EOR efficiency of emulsions

