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The removal of residual oil that has been trapped in the pore space of underground geological settings is of critical importance for environmental processes such as the remediation

of vadoze / saturated zones of the subsurface, and energy production like the enhanced oil recovery from oil-bearing reservoir rocks. The remediation of soils polluted by non-

aqueous phase liquids (NAPLs) resulting from leaking storage tanks, spills and improper waste disposal is considered as one of the most significant challenges. NAPLs have

caused widespread subsurface contamination, while they tend to sink in groundwater systems, resulting in complex dispersal and plume patterns, which are long-term sources of

subsurface pollution, and difficult to clean-up. Moreover, the continuous dissolution of NAPLs may lead to the extensive contamination of groundwater.

Concerning energy production, due to population and economic growth, the global energy consumption is estimated to increase by almost 50% in the next thirty years. Τhe

overall oil recovery efficiency for primary and secondary recovery range from 35% to 45% and tertiary recovery methods that can increase the enhanced oil recovery (EOR)

efficiency by 10-30% could contribute to energy supply. Conventional methods include chemical flooding, gas injection, thermal recovery, microbial enhanced oil recovery

(MEOR), low-salinity waterflooding, and foam-EOR. Chemical EOR (CEOR) includes different methods of injecting polymers, surfactants, alkaline, emulsions, and foams.

The use of nanoparticles and Pickering emulsions in EOR processes comprise emerging and well-promising approaches. The green synthesis and stabilization of aqueous

suspensions of iron oxide nanoparticles from plant extracts is an environmental-friendly approach utilizing the extracted polyphenols as reductants and polymeric coatings.

 Development of “smart fluids” by grafting adequately synthesized polymers

to the surface of nanoparticles and use them as agents for the synthesis of

Pickering emulsions.

 Correlation of the stability / longevity of nano-colloids, and rheological

behavior of Pickering emulsions with their composition (salinity, ionic

strength, oil to water volume ratio).

 Correlation of the interfacial and rheological properties of “smart fluids” with

their capacity to mobilize oil ganglia from porous media (micromodels,

sandpacks).

 Cost benefit analysis and selection of the most efficient “smart fluids” for

EOR or remediation of oil-polluted soils.
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During processes, the physicochemical properties of the rock alter to favor the mobilization of trapped

oil ganglia. This might occur with: (i) the reduction of the interfacial tension thus increasing the capillary

number; (ii) the increase of water viscosity, thus increasing the mobility ratio; (iii) the alteration of the

wettability, thus facilitating the detachment of oil from the rock surfaces.

PPHs : pH = 6.36 , ζ-potential = -37.7mV

IONPs : pH = 6.05 , ζ-potential = -22.9mV
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IONPs 1.0g/L 52.89±0.29 53.54 21.7 ± 0.02 9.6± 8.7 141.8±5.8

IONPs 0.75g/L 54.47±0.41 55.31 25.7 ± 0.20 20.7 ± 5.1 164.2±2.2

IONPs 0.5g/L 56.48±0.27 58.12 33.4±2.4 24.9±3.1 105.7±8.2

IONPs 0.25g/L 59.78±0.17 58.35 25.4±1.20 19.1±0.6 105.7±16.2

PPHs 3.0g/L 45.29 ±0.13 49.05 - - 68.06±8.3

Methodology

Viscous fingering

Frontal drive

Nanoparticle 

suspension

Primary 

Drainage 

So

Primary 

Imbibition 

So

Secondary 

Imbibition 

So

Total Oil 

recovery 

efficiency 

(%)

IONPs 1.0g/L 0.85 0.52 0.50 41.2

IONPs 0.75g/L 0.84 0.511 0.518 38.3

IONPs 0.5g/L 0.81 0.45 0.45 44.4

IONPs 0.25g/L 0.81 0.53 0.52 35.8

PPHs 3.0g/L 0.82 0.542 0.541 34.0

Suspension of iron-oxide nanoparticles (IONPs) as 

injection fluid in Secondary Imbibition

Experimental tests in glass etched pore network with nanoparticle

suspensions at various concentrations gave the aforementioned

residual oil saturation values per each cycle, namely Primary

Drainage (oil displaces water), Primary Imbibition (water

displaces oil) and Secondary Imbibition (nanoparticle suspension

displaces oil). The changes of oil saturation between primary and

secondary imbibition tests are quite small, thus the potential to

stabilize Pickering emulsions and use them as injection fluids in

Secondary Imbibition was investigated.

Ultrasound probe IONP stabilized Pickering emulsions

(a) Cfe = 0.25g/L (b) Cfe = 1.0g/L 

Volume ratio: IONPs suspension – nC10 [2:1]
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The rheology of Pickering emulsions follows the 

power law model: 𝜇 = 𝜇𝑖𝑛𝑓 + 𝜇1 − 𝜇𝑖𝑛𝑓 ሶ𝛾𝑛−1

𝛾𝑤 is the shear rate at pore-wall, 𝜑𝑉 is the porosity of the planar

porous medium at the vertical direction, rH is the equivalent hydraulic

pore radius (rH=45 μm) [3] , Ca is the capillary number, κ is the

viscosity ratio , 𝜇𝑜𝑖𝑙 = 0.026 Pa s

Emulsion μ1

(Pa s)

μinf  

(Pa s)

n <μ>

(Pa s)

Ca

(10-5)

κ

CFe =1.0 g/L 2.468 0.001 0.196 0.423 11.9 1.63

CFe =0.75 g/L 1.053 0.003 0.217 0.189 5.98 0.72

CFe =0.50 g/L 0.213 0.006 0.252 0.045 1.37 0.17

CFe=0.25 g/L 0.564 0.002 0.287 0.115 3.45 0.44
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Oil-drop size distributions in emulsions
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Rate (1/s)

 t=0min μο=2.47 μinf=0.001 n=0.196

 t=30min μο=4.27 μinf=0.001 n=0.213

 t=60min μο=5.18 μinf=0.001 n=0.196

 t=90min μο=3.48 μinf=0.005 n=0.200

 t=120min μο=3.32 μinf=0.007 n=0.135

 t=160min μο=0.722 μinf=0.004 n=0.161

 t=210min μο=0.526 μinf=0.005 n=0.215

Rheological properties of emulsion CFe =1.0g/L
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 Polyphenol-coated iron oxide nanoparticles (IONPs) were synthesized and the nano-colloid suspensions

were stabilized successfully.

 Τhe decrease on the interfacial tension and contact angle facilitates the emulsification and detachment of

oil ganglia from the solid surface by the nano-colloid suspensions.

 The oil recovery efficiency is maximized when using Pickering emulsions, due to the high viscosity ratio,

and the creation of stable displacement front.

 The maximum oil efficiency is attained by the emulsion prepared at the highest IONP concentration (1.0

g/L), composed of small oil drops of narrow size distribution, and characterized by the lowest viscosity at

late times (maximum stability).

Conclusions

Assessing the displacement efficiency of Pickering emulsions

Schematic diagram of experimental setup

Visualization tests on a transparent pore network

Morphology of glass-etched pore network

Permeability k=20.5 Da

Porosity φ=0.65

Pore volume 2mL
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Flow rate at Primary Drainage: 

0.08mL/min 

& Primary/Secondary Imbibition: 

0.2mL/min

Injected Volume

Primary Drainage: 8mL

Primary Imbibition: 8mL

Secondary Imbibition: 10mL

Displacement tests on a sandpack

Schematic diagram of experimental setup

Flow rate at: Primary 

Drainage: 0.4ml/min 

& Primary/Secondary 

Imbibition: 1.0ml/min

Permeability k=11.9 Da

Diameter=3.0 cm

Length=6.6 cm

Porosity φ=0.49

Pore volume 19.7 mL

Injected Volume

Primary Drainage: 80mL , 

Primary Imbibition: 80mL, 

Secondary Imbibition: 40mL
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concentration in 

Pickering emulsion

Primary

Drainage
*So

Primary

Imbibition
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Imbibition

So

Sec. Imbib. 

oil recovery

efficiency (%)

1.0 g/L 0.83 0.49 0.15 69.4

0.75g/L 0.84 0.55 0.27 50.9

0.50g/L 0.80 0.51 0.39 23.5

0.25g/L 0.82 0.52 0.24 53.8

Displacing 

emulsion in 

Secondary 

Imbibition

Primary

Drainage
*So

Primary 

Imbibition So

Secondary

Imbibition

So

Oil 

recovery

efficiency

(%)
1.0 g/L 0.44 0.28 0.16 42.8

0.75g/L 0.48 0.23 0.12 47.8

For assessing emulsions: (1) their stability is quantified 

by the macroscopic- phase separation and microscopic 

oil-drop size distribution; (2) the shear viscosity is 

measured as function of time with steady-state tests, and 

the loss and storage moduli are measured with dynamic 

frequency sweep tests on a stress rheometer .

*So →Oil saturation 
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