

Synthesis of polymer-functionalized nanoparticles and development of smart fluids for enhanced oil recovery

<u>Christina Ntente^{1,2}, Zacharoula latridi^{1,2}, Maria Theodoropoulou¹, Georgios Bokias^{1,2} and Christos Tsakiroglou¹</u>

¹ Foundation for Research and Technology Hellas - Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece

² University of Patras, Department of Chemistry, 26504 Patras, Greece

www.iceht.forth.gr —

Introduction

The use of polymer functionalized inorganic nanoparticles (PNPs) for enhanced oil recovery (EOR) from reservoir rocks seems well-promising [Hu, et al. RSC Adv., 2018, 8, 30491]. The PNPs combine the advantages of small size, large surface area, high surface energy with the plentiful hydroxyl on the surface of the inorganic nanoparticles [Yoshio, et al. Chem. Lett., 2011, 40, 348] and multifunctionality or responsiveness of the designed polymers. Herein, comb-type amphiphilic terpolymers consisting of the hydrophilic and anionic monomers 2-acrylamido-2methyl-1-propanesulfonic acid (AMPSA) and acrylic acid (AA) that offer a hydrophobic monomer dodecyl methacrylate (DMA), were synthesized through free radical polymerization (FRP). The self-organization in aqueous solutions of the terpolymers is investigated by means of fluorescence probing. Next, the synthesis of polymer-coated SiO₂ nanoparticles (PNPs) was approached by post-grafting on amine-functionalized silica nanoparticles (SiO₂-NH₂ NPs) or by surface-initiated FRP of AMPSA from surface of the SiO₂-NH₂ NPs, initiated by ammonium cerium (IV) nitrate (CAN). Dilute dispersions of the terpolymers or the PNPs were mixed with salts (NaCl, CaCl₂), and their dynamic surface tension and oil/water interfacial tensions were measured by the pendant drop method. Oil-in-water Pickering emulsions were prepared by mixing n-dodecane with aqueous polymer solutions with ultrasound probe, their rheological behavior was investigated, and their stability was evaluated macroscopically, with optical inspection of the transient changes of phase volumes inside a volumetric tube, and microscopically by measuring the oil drop-size distribution. Finally, visualization tests of the immiscible displacement of residual n-dodecane by aqueous terpolymers dispersions in a glass-etched pore network were used to assess the potential for application to EOR processes.

Amphiphilic terpolymers

PNPs synthesis

Stability of oil-in-water Pickering emulsions

Visual appearance of P(AMPSA_x-co-AA_y-co-DMA_z) emulsions

- Aq. Phase (20mL): P(AMPSA_x-co-AA_y-co-DMA_z) in water or NaCl 0.25 M
- Oil phase (10mL): oil red / n-C12

P(AMPSA₇₀-co-AA₂₀-co-DMA₁₀) 0.25% / water

P(AMPSA₇₀-co-AA₂₀-co-DMA₁₀) 0.25% / NaCl 0.25 M

SiO₂ **TGA** analysis SiO₂ SiO2-NH2 SiO₂-g-PAMPS (%) ⁷⁰ SiO2-g-P(AMPSA70-co-AA20-co-DMA10 Water 0.25M 0.5M 2M Water 0.25M 0.5M 2M Water 0.25M 0.5M 2M

PNPs characterization

Colloidal stability

SiO₂-g-P(AMPSA₇₀-co-AA₂₀-co-DMA₁₀)

Visualization tests of enhanced oil recovery (EOR)

Dispersion of SiO₂-g-PAMPSA 0.15% displaces residual n-C12 colored with oil red

PNPs dispersions in water or in NaCl (0.25 M, 0.5 M, 2 M)

Interfacial properties of polymer or PNPs aqueous dispersions

Measurement of the dynamic surface and interfacial tension for aqueous phase/air and aqueous phase/n-dodecane (n-C12) systems with the **pendant drop method** and use of **OpenDrop** software [Berry et al., J. Coll. Inter. Sci., 2015, 454, 226–237; <u>http://opencolloids.com</u>]

Conclusions

- ✓ Successful synthesis of amphiphilic P(AMPSA-co-AA-co-DMA) terpolymers
- ✓ The terpolymers self-associate at polymer concentrations above the CMC
- The stability of the polymer-stabilized Pickering emulsions depend on the presence of NaCl
- \checkmark Successful synthesis of polymer-functionalized SiO₂ nanoparticles (PNPs)
- \checkmark The PNPs create stable dispersions in aqueous phase with and without the presence of salts
- ✓ Promising preliminary EOR tests

time (min) time (min Surface (ST) and Interfacial tensions (IT) as functions of time for 0.25 % wt solutions of the polymer $P(AMPSA_{70}-co-AA_{20}-co-DMA_{10})$ or the SiO₂-g-P(AMPSA₇₀-co-AA₂₀-co-DMA₁₀) PNPs in water or in NaCl and CaCl₂. The images at the top show the drop shape at the initial and final stage.

 \checkmark Significant reduction of ST and IT is indicative of the stability of Pickering foams and emulsions

Acknowledgements

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment" (Project Number: HFRI-FM17-361, acronym: EOR-PNP).