

Nanoparticle-based suspensions and emulsions for enhanced oil recovery

A. Strekla^{1,2}, Ch. Ntente^{1,3}, M. Theodoropoulou¹ and Ch. Tsakiroglou^{1,*}

¹ Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece

² University of Patras, Department of Physics, 26504 Patras, Greece

³ University of Patras, Department of Chemistry, 26504 Patras, Greece

* <u>ctsakir@iceht.forth.gr</u>

Contents of presentation

- Introduction
- > Overview
- Synthesis of Fe NPs and characterization
- > Tests of enhanced oil recovery in porous media models

➢ Conclusions

Introduction

- Energy consumption worldwide is expected to increase by 50% relative to current levels by the end of 2030.
- This growth is unlikely to be met by renewable resources, and thus there is a strong and growing demand for oil as a predominant energy resource.

- Globally the overall oil recovery factors for primary and secondary recovery range from 35% to 45%.
- A tertiary recovery method can enhance the recovery factor by 10-30%, which could contribute to energy supply
- The use of nanoparticles in enhanced oil recovery (EOR) processes comprises an emerging and well-promising approach.

Overview

Measurements of Fe NPs suspension					
рН	6,02				
Eh (mV)	499,1				
Surface Tension(mN/m)	Wilhelmy plate DuNouy				
	53.84 55.12				
Interfacial Tension (mN/m)	19.41 (with n-C12)				
Size (nm)	132,43				
Z-potential (mV)	-25,5				

Image : Solution of FeNPs

Properties of FeNPs

fluids	Density d (g/mL)
Paraffin oil	0.829
NaCl 0.25M	1.002
Fe NPs 0.25(g/L)	0.9931
Fe NPs 0.25 (g/L) – NaCl 0.25M	0.9814
Fe NPs 0.25 (g/L) – NaCl 0.25M (Emulsion)	0.833

Measurement ST and IT of suspensions:

The *static* surface/interfacial tension of aqueous phase/air and aqueous phase/oil was measured by using a tensiometer with DuNouy Ring.

suspension	Surface tension (mN/m)	Interfacial tension (mN/m)
NaCl 0.25M	66.42	30.59
Fe NPs 0.25(g/L)	52.87	27.93
Fe NPs 0.25 (g/L) – NaCl 0.25M	50.03	20.72

Contact angles:

Solutions	CA (°)/air	image	CA (°) / paraffin	Image	
NaCl 0.25M	53.85		54.45		
Fe NPs 0.25 g/L	53.05		39.2		
Fe NPs 0.25 g/L – NaCl 0.25M	55.0		43.95		

Size and z-potential:

The suspended nanoparticle size distribution was determined with dynamic light scattering (DLS), while the stability of the nano-colloids was confirmed by measuring the ζ -potential.

solutions	Size (nm)
Fe NPs 0.25 (g/L)	36.39
Fe NPs 0.25(g/L) – NaCl 0.25M	35.26
Fe NPs 0.25(g/L) – NaCl 0.25M (Emulsion)	220.2

Image : Dynamic light scattering

Zeta potential of FeNPs 0.25 (g/L) is -22.1 mV.

Pickering Emulsion

Suspension of FeNPs - oil (n-decane) Volume ratio 1:1

Ultrasound probe

With the aid of an ultrasound probe, the nano-colloids were mixed with oil (n-decane) to prepare Pickering emulsion of FeNPs 0.25g/L -NaCl 0.25M.

Pickering emulsion

Experimental setup of visualization tests on transparent pore networks

Values of Ca and ĸ

Capillary number $Ca = \frac{\mu_{displacing U}}{IT}$	fluid	Flow rate(10 ⁻⁶ /60) m3/s	U (10 ⁻⁵ m/s)	μ (Pa s)	IT (mN/m)	Ca (10 ⁻ ⁶)	К
Views it water $\kappa = \frac{\mu_{displacing}}{\mu_{displacing}}$	paraffin	0.08	0.94	0.026	30.5	8.0	26.0
VISCOSILY FALLO $\kappa = \frac{\mu_{displaced}}{\mu_{displaced}}$	NaCl 0.25M	0.2	2.35	0.001	25.0	0.94	0.038
$\mu_{emulsion}$ = 0.01246 Pa s	FeNPs 0.25 g/L	0.2	2.35	0.001	25.0	0.94	0.038
$\mu_{paraffin} = 0.026 \text{ Pa s}$ $\mu_{water} = 0.001 \text{ Pa s}$	FeNps 0.25 g/L – NaCl 0.25M	0.2	2.35	0.001	25.0	0.94	0.038
Ca pore scale -> $Ca_{L1}=Ca*factor$ Ca network scale -> $Ca_{LN}=Ca_{L1}*L_N/L_p$ Drainage: $Ca_{L1}=0.0324$, $Ca_{LN}=3.2$ Imbibition: $Ca_{L1}=0.0038$, $Ca_{LN}=0.38$	FeNps 0.25 g/L – NaCl 0.25M (emulsion)	0.2	2.35	0.01246	25.0	1.17	0.48
Tsakiroglou et al., AIChE J. 49(10), 2472 (2003)							

Transient two-phase flow patterns

Primary Drainage

Displacement NaCl 0.25M by paraffin oil (red- colored) κ = 26.0 Ca = 8x10⁻⁶

Primary Imbibition

NaCl 0.25M $\kappa = 0.038$ Ca = 0.94x10⁻⁶

Transient two-phase flow patterns

FeNPs 0.25 g/L κ≈ 0.038 Ca = 0.94x10⁻⁶

FeNPs 0.25 g/L – NaCl 0.25M $\kappa \approx 0.038$ Ca = 0.94x10⁻⁶

Tsakiroglou et al., J. Coll. & Interface Sci. 267, 217-232 (2003) Tsakiroglou, J. Non-Newt. Fluid Mech. 117, 1–23 (2004)

FeNPs 0.25 g/L – NaCl 0.25M Emulsion $\kappa = 0.48$ $Ca = 1.17 \times 10^{-6}$

Results

Type of	Displaced fluid	Displacing fluid	Flow rate	Injected	Oil	Oil removal
displacement			(mL/min)	volume (mL)	saturation	efficiency (%)
Drainage	NaCl 0.25M	Paraffin oil	0.08	8.0	0.82	-
Prim. Imbib.	Resid. paraffin oil	NaCl 0.25M	0.2	8.0	0.45	46.25
Sec. Imbib.	Resid. paraffin oil	FeNPs 0.25 (g/L)- water suspension	0.2	14.4	0.36	20.0
Drainage	NaCl 0.25M	Paraffin oil	0.08	8.0	0.82	-
Prim. Imbib.	Resid. paraffin oil	NaCl 0.25M	0.2	8.0	0.41	50.0
Sec. Imbib.	Resid. paraffin oil	FeNPs 0.25 (g/L)- NaCl 0.25M suspension	0.2	14.0	0.39	4.88
Drainage	NaCl 0.25M	Paraffin oil	0.08	8.0	0.82	-
Prim. Imbib.	Resid. paraffin oil	NaCl 0.25M	0.2	8.0	0.44	46.34
Sec. Imbib.	Resid. paraffin oil	Emulsion	0.2	12.0	0.09	79.55

Conclusions

- The potential to increase the residual oil recovery efficiency by injecting suspensions of iron oxide nanoparticles synthesized and stabilized by the polyphenols of parsley extracts is investigated with visualization tests on a glass-etched pore network.
- The nanoparticles mobilize trapped oil by transferring it from upstream to downstream through a mechanism of successive steps of drainage (local increase of oil saturation) / imbibition (local decrease of oil saturation).
- It seems that the oil recovery efficiency of secondary imbibition tests is favored when using low iron concentration Fe NPs suspension without the presence of NaCl. On the other hand, the oil recovery efficiency increases respectably when using Pickering emulsions stabilized by FeNP with NaCl.

Acknowledgement

The research project is supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment" (Project Number: HFRI-FM17-361, Title: Enhanced oil recovery by polymer-coated nanoparticles, Acronym: EOR-PNP, Duration: 1/1/2020-31/12/2022).

